

CFAST – The Fire Model in the SQA Toolbox for Safety Analysis

2004 DOE/Contractor Fire Protection Workshop Las Vegas, NV, June 21-25, 2004

Dr. Allan Coutts, Ph.D.
Washington Safety Management Solutions
Aiken, SC 29804, 803.502.9811
allan.coutts@wxsms.com

Presented at 2004 EFCOG

CFAST – The Fire Model in the SQA Toolbox for Safety Analysis

EFCOG Safety Analysis Workshop, Pleasanton, CA, May 1-6, 2004

Dr. Allan Coutts, Ph.D.
Washington Safety Management Solutions
Aiken, SC 29804, 803.502.9811
allan.coutts@wxsms.com

Chip Lagdon, EH-31/GTN
DOE Office of Quality Assurance Programs
Washington, D.C. 20585, 301.903.4218
Chip.Lagdon@eh.doe.gov

Software QA for Safety-Related Software

DNFSB TECH-25

- Issued in January 2000
- Concluded that SQA for safety analysis software is incomplete
- Recommendation 2002-1
 - Issued September 2002
 - Define Responsibility & Authority
 - Recommend Software
 - Update Directives
 - Conduct Research & Development

Toolbox Codes to support DSA work

Selected Software

Fire CFAST

Leak Path FactorMELCOR

Chemical Release/Dispersion and Consequences

ALOHA, EPIcode

Radiological Dispersion and Consequences

MACCS2, GENII.

Document Access

- http://tis.eh.doe.gov/sqa/central_registry.htm
- Interim guidance reports are issued
- Interim gap analysis reports are issued

Zone Model Basics

CFAST Design

- CFAST is a zone model
- Solves Navier-Stokes equations for mass & energy transport
- Separates a fire compartment into two layers
- Each zone is assumed to be uniform (temperature, smoke concentrations, etc.)
- Fire acts as a pump moves energy and mass between layers - other mixing occurs at doors

Typical CFAST Results

Capabilities

- Accounts for effect of oxygen depletion
- Tracks O₂, CO₂, CO, Soot, HCl, HCN
- Handles 30 fire compartments
- Main and object fires
- Models
 - Natural convection
 - Force convection
 - Changes in horizontal openings

Principle Limitations

- CFAST does not evaluate fire behavior, rather it models the response of the building to a fire
- Neglects
 - Radiation feedback from walls that would increase pyrolysis rate
 - Wall flow
 - Radiation transfer through openings

Available CFAST Versions

- Two actively supported versions
 - Version 3.1.7, published October 2001
 - Version 5.1.1, published May 2004
- Graphical User Interface (GUI)
 - Version 3.1.7 works for most versions of DOS (95, 98, 2000, ME)
 - Version 5.0 not ready for prime time

HRR and Pyrolysis Rate – 3 Trash Bags

CFAST Libraries & Output

- Libraries
 - Thermal Properties Database (thermal.df)
 - Object library file (objects.df)
- Output files

History file*.HI

Text file (Echo file)*.txt

Spreadsheet file *.csv

- Other topics
 - CPLOT
 - Graphical User Interface (GUI)

Graphical User Interface (GUI)

- Permits the automatic generation of the input file
- Is menu driven
- Automatically generates HRR and pyrolysis curves
- Supports modification of thermal library files
- Supports modification of object library files
- Allows pictorial development of mechanical ventilation systems
- Provides estimating tools derived from FIREFORM

Graphical User Interface – Basic Screen

□ (Untitled) □□
TITLE: One Compartment Base Case
GRAPHICS: ▼
STRUCTURE:
COMPARTMENTS
1 3H
ENVIRONMENT:
CEILING JET:

DOS – CFAST Command Line

Possible CFAST Analytical Approach

• Must address:

- Analysis uncertainties
- Facility variability
- Establish a reasonable degree of analysis margin

Solution Method

- Run multiple scenarios
- Focus on defending design, not obtaining the most accurate representation of a single fire scenario
- Analysis must consider all potential scenarios

CFAST Analytical Steps

- 1. Use most likely ventilation conditions & geometry
- 2. Use a reasonably bounding (nominal) HRR curve
- 3. Establish the room temperature profile w/CFAST
- 4. Iterate the ventilation conditions & geometry to maximize temperature
- 5. Iterate the HRR curve (50% increase in PHRR)
- 6. Iterate the HRR curve (80% of nominal PHRR)
- 7. Report the most demanding time-temperature profiles developed above as sufficiently bounding temperature profiles.

Addressing Flashover Potential

- Not expected if $T_{upper} < 450$ °C.
- Expected if $T_{upper} > 600^{\circ}C$
- Indeterminate if $450 < T_{upper} < 600$ °C
- If indeterminate:
 - Increase HRR curve slightly (i.e., total energy 2X)
 - T < 600°C, nominal HRR temperature curve is considered representative.
 - T > 600°C: take temperature to be 600°C

Project Plan for CFAST Effort

- (1) Establish inputs (HRR curves, combustion chemistry estimates, room geometry, etc.) with an appropriate citation
- (2) Conduct CFAST modeling (consider benchmarking to similar problem)
- (3) Produce sensitivity and switchover analysis
- (4) Document analysis

Conclusion

- CFAST can be used to support DSA preparation
- Users must be knowledge in fire modeling & understand implications of assumptions
- Consider benchmarking results
- Establish consistent analytical approach
- Running the model is only part of the effort